

segundo.

MOVIMIENTO RECTILÍNEO Y UNIFORME-MENTE ACELERADO

I.E.S La Magdalena.

Avilés. Asturias

La trayectoria es una rectaLa aceleración es constante

La aceleración mide la rapidez

Se mide en m/s². Así una acelera-

ción de 5 m/s2 indica que la veloci-

dad aumenta a razón de 5 m/s cada

con la que varía la velocidad.

Ecuaciones:

$$V = V_0 + a t$$

 $S = S_0 + V_0 t + \frac{1}{2} a t^2$

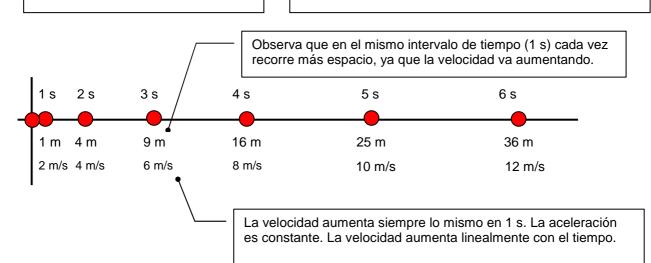
Donde:

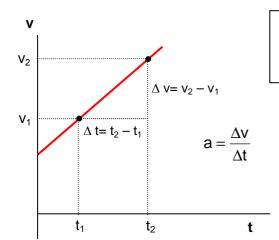
 V_0 = velocidad cuando t =0

S₀ = distancia al origen cuando t =0

S = distancia al origen (puede que no coincida con el espacio recorrido)

t = 0, significa cuando empieza a contarse el tiempo o cuando se aprieta el cronómetro





La gráfica v - t es una recta. La inclinación de la recta depende de la aceleración.

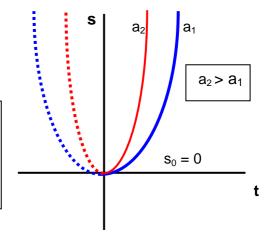
Para calcular v $_{\rm 0}$ determinar el punto de corte de la recta con el eje "v"

Para calcular la aceleración del movimiento, calcular la pendiente de la recta

La gráfica s/t es una parábola.

La aceleración es positiva si la parábola se abre hacia arriba y negativa si lo hace hacia abajo.

Cuanto más cerrada sea la parábola, mayor aceleración El desplazamiento inicial s ₀ se determina viendo el punto de corte con el eje "s"



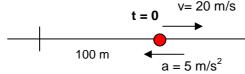
Para escribir las ecuaciones de un movimiento rectilíneo y uniformemente acelerado:

- ☑ Fija el origen a partir del cual se va a medir la distancia.
- ☑ Fija el sentido al que se le asigna signo positivo
- \square Determina el valor de las constantes del movimiento: **a**, **s**₀ , **v**₀
- \square Adapta las ecuaciones generales al caso particular sustituyendo los valores de **a**, \mathbf{s}_0 , \mathbf{v}_0 para el caso considerado.

Ten en cuenta que aunque no usemos los elementos matemáticos las magnitudes que estás usando: distancia al origen, velocidad, aceleración, son lo que se llaman **vectores** (muy a menudo los vectores se representan por flechas). Los vectores además de un valor (el número) tienen una dirección y un sentido. Pues bien, el signo nos indica el sentido del vector (hacia adonde apunta la flecha)

Ejemplo 1.

Escribe las ecuaciones que describen el movimiento del punto de la figura



Solución:

Ecuaciones generales para el movimiento:

$$v = v_0 + a t$$

 $s = s_0 + v_0 t + \frac{1}{2} a t^2$

Se toma como origen de distancias la línea vertical.

Sentido positivo hacia la derecha.

Determinación de s_0 : ¿ A qué distancia del origen está el punto cuando t = 0? $s_0 = 100 \text{ m}$

Determinación de v_0 : ¿Cuál es la velocidad del punto cuando t = 0? $v_0 = 20 \text{ m/s}$

Determinación de la aceleración: $a = -5 \text{ m/s}^2$ (signo menos, ya que apunta hacia la izquierda).

Ecuaciones particulares para este movimiento:

$$v = 20 - 5 t$$

 $s = 100 + 20 t - 2,5 t^2$

Una vez escritas las ecuaciones se pueden resolver prácticamente todas las cuestiones que se quieran plantear. Solamente hay que *traducir* de nuestro lenguaje al *lenguaje de la ecuación* que solamente sabe de valores de s, v ó t.

Ejemplos: ¿Cuánto tarda en frenar el punto del ejemplo anterior?.

Traducción al *lenguaje ecuación*: ¿Qué valor toma t cuando v =0?

Si
$$v = 0$$
; $0 = 20 - 5t$;

$$t = \frac{20}{5} = 4 \text{ s}$$

¿Cuál es su velocidad al cabo de 5,3 s?

Traducción al lenguaje ecuación: ¿Qué valor toma v cuando t = 5,3 s?

Si $t=5,3\ s$; v=20-5 . $5,3=-6,5\ m$ /s (el signo menos indica que se desplaza hacia la izquierda. Después de frenar ha dado la vuelta)

Ejemplo 2

Un cuerpo parte del reposo y comienza a moverse. Los datos tomados se recogen en la tabla adjunta. Indicar qué tipo de movimiento tiene y determinar las ecuaciones para el mismo.

Solución:

Como se observa en la tabla adjunta el espacio recorrido no varía linealmente con el tiempo. Esto es: en el intervalo de un segundo recorre cada vez más espacio. Esto indica que su velocidad va aumentando. Si se trata de un movimiento uniformemente acelerado el aumento de velocidad, o lo que es lo mismo, **su aceleración, será constante**.

t(s)	s (m)
0	10
1	13
2	22
3	37
4	58
5	85

Si el movimiento es uniformemente acelerado deberá cumplir la ecuación: $s = s_0 + v_0 t + \frac{1}{2} a t^2$.

Como en este caso $v_0 = 0$, la ecuación quedará: $s = s_0 + \frac{1}{2}$ a t^2 .

Despejando a :
$$\frac{1}{2}$$
 a $t^2 = s - s_0$; $a = \frac{2(s - s_0)}{t^2}$

Usando la ecuación anterior vamos probando con datos correspondientes de t y s comprobamos si el valor de a es constante:

$$a = \frac{2(13-10) \text{ m}}{1^2 \text{ s}^2} = 6 \frac{\text{m}}{\text{s}^2} \; ; \; \; a = \frac{2(22-10) \text{ m}}{2^2 \text{ s}^2} = 6 \frac{\text{m}}{\text{s}^2} \; \; ; \; a = \frac{2(37-10) \text{ m}}{3^2 \text{ s}^2} = 6 \frac{\text{m}}{\text{s}^2}$$

Por tanto estamos ante un movimiento uniformemente acelerado con $a = 6 \frac{m}{s^2}$

Para obtener las ecuaciones determinamos el valor de v₀ y s₀:

 $v_0 = 0$, ya que nos lo dicen en el enunciado

 $s_0 = 10$ m, ya que es el valor de s cuando t = 0 (ver tabla).

Ecuaciones:
$$v = 6 t$$

 $s = 10 + 3 t^2$

Ejemplo 3

Una piedra es lanzada verticalmente y hacia arriba con una velocidad de 15 m/s. Determinar:

- a) Ecuaciones del movimiento.
- b) Altura máxima alcanzada.
- c) Valor de la velocidad cuando t = 0,8 s y t = 2,3 s. Comentar

Solución:

Esquema:

Origen : el suelo (punto de lanzamiento)

Sentido positivo : hacia arriba

Determinación de v_0 : ¿Cuál es la velocidad cuando t=0? El tiempo empieza a contar cuando la piedra sale de la mano. Luego $v_0=15$ m/s

Determinación de s_0 : ¿A qué distancia del origen está la piedra cuando t=0? Cuando se lanza la piedra está en el punto de lanzamiento (origen). Luego $s_0=0$ Determinación del valor de a: a=g=-10 m /s². El signo menos se debe a que la aceleración apunta hacia abajo y hemos considerado sentido positivo hacia arriba. $v=15\frac{m}{s}$ a) Ecuaciones: v=15-10 t s=15 t - 5 t²

b) ¿Cuál es la altura máxima alcanzada?

Traducción al *lenguaje ecuación:* ¿Para que valor de t, v = 0? (ya que en el punto de altura máxima la piedra se detiene durante un instante)

Si
$$v_{\underline{}}=0$$
; $0=15-10$ t; $t=\frac{15}{10}=1,5$ s. Tiempo que tarda en alcanzar la altura máxima

Para calcular la altura máxima alcanzada calculamos la distancia a la que se encuentra del origen cuando t = 1,5 s:

$$s = h_{max} = 15 \cdot 1,5 - 5 \cdot 1,5^2 = 11,25 \text{ m}.$$

c) Valores de la velocidad:

$$v_{(t=0,8)} = 15 - 10 . 0.8 = 7 \text{ m/s}$$

$$v_{(t=2.3)} = 15 - 10 \cdot 2.3 = -8 \text{ m/s}$$

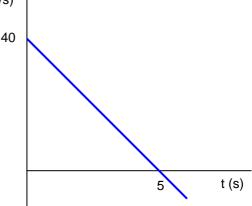
Como se puede observar al cabo de 0,8 s del lanzamiento la piedra aún está en la fase ascendente, ya que el signo de la velocidad es positivo (sentido positivo: hacia arriba). Como se ve su velocidad va disminuyendo, debido a que durante el tramo de ascenso la aceleración lleva sentido contrario a la velocidad (movimiento decelerado)

Al cabo de 2,3 s la piedra se mueve hacia abajo. El signo es negativo: sentido hacia abajo. Efectivamente, a los 1,5 s alcanza la altura máxima y como la aceleración continúa actuando, comienza su carrera de descenso, pero esta vez al tener el mismo sentido aceleración y velocidad, ésta aumenta.

Ejemplo 4.

La gráfica de la izquierda se ha obtenido tras estudiar el movimiento de un cuerpo.

- a) ¿Qué tipo de movimiento tiene?
- b) ¿Cuáles son sus ecuaciones?
- c) ¿Qué sucede para t = 5 s?



4

 a) La gráfica v – t es una recta con pendiente negativa. Esto nos indica que la velocidad disminuye con el tiempo pero de forma lineal (la misma cantidad en 1 s). Luego el movimiento es uniformemente acelerado (con aceleración negativa. También se llama decelerado). Para calcular la aceleración (deceleración) calculamos la pendiente de la recta v – t:

Pendiente =
$$a = \frac{v_2 - v_1}{t_2 - t_1} = \frac{\left(0 - 40\right)\frac{m}{s}}{\left(5 - 0\right)s} = -8\frac{m}{s^2}$$
.

Observa los valores tomados: $t_1 = 0$ $v_1 = 40$; $t_2 = 5$ $v_2 = 0$

b) Como no nos dan datos, podemos tomar para s_0 cualquier valor. Tomaremos $s_0 = 0$

$$v_0$$
= 40 m/s (leído en la gráfica)
a = -8 m/s² (calculado)

Ecuaciones:
$$v = 40 - 8 t$$

 $s = 40 t - 4 t^2$

c) En la gráfica se puede leer que cuando t = 5 s, v = 0. Luego al cabo de 5 s se detiene (es un movimiento decelerado). Si t es mayor de 5 s, observa que la línea en la gráfica v – t rebasa el eje horizontal empezando la velocidad (valores del eje Y) a tomar valores negativos ¿cómo interpretas ésto?